Object detection and classification from large-scale cluttered indoor scans

نویسندگان

  • Oliver Mattausch
  • Daniele Panozzo
  • Claudio Mura
  • Olga Sorkine-Hornung
  • Renato Pajarola
چکیده

We present a method to automatically segment indoor scenes by detecting repeated objects. Our algorithm scales to datasets with 198 million points and does not require any training data. We propose a trivially parallelizable preprocessing step, which compresses a point cloud into a collection of nearly-planar patches related by geometric transformations. This representation enables us to robustly filter out noise and greatly reduces the computational cost and memory requirements of our method, enabling execution at interactive rates. We propose a patch similarity measure based on shape descriptors and spatial configurations of neighboring patches. The patches are clustered in a Euclidean embedding space based on the similarity matrix to yield the segmentation of the input point cloud. The generated segmentation can be used to compress the raw point cloud, create an object database, and increase the clarity of the point cloud visualization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developing a New Method in Object Based Classification to Updating Large Scale Maps with Emphasis on Building Feature

According to the cities expansion, updating urban maps for urban planning is important and its effectiveness is depend on the information extraction / change detection accuracy. Information extraction methods are divided into two groups, including Pixel-Based (PB) and Object-Based (OB). OB analysis has overcome the limitations of PB analysis (producing salt-pepper results and features with hole...

متن کامل

Object-centric Sampling for Fine-grained Image Classification

This paper proposes to go beyond the state-of-the-art deep convolutional neural network (CNN) by incorporating the information from object detection, focusing on dealing with fine-grained image classification. Unfortunately, CNN suffers from over-fiting when it is trained on existing finegrained image classification benchmarks, which typically only consist of less than a few tens of thousands t...

متن کامل

Segmentation Assisted Object Distinction for Direct Volume Rendering

Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently powerful voxel parsing mechanism for object distinction. In this work, we are proposing an ...

متن کامل

Unsupervised object region proposals for RGB-D indoor scenes

In this paper, we present a novel unsupervised framework for automatically generating bottom up class independent object candidates for detection and recognition in cluttered indoor environments. Utilizing raw depth map from active sensors such as Kinect, we propose a novel plane segmentation algorithm for dividing an indoor scene into predominant planar regions and non-planar regions. Based on...

متن کامل

Acquisition of 3D Indoor Environments with Variability and Repetition

Large-scale acquisition of exterior urban environments is by now a well-established technology, supporting many applications in search, navigation, and commerce. The same is not true for indoor environments, however: access is often restricted and the spaces may be cluttered. In addition, such environments typically contain a high density of repeated objects (e.g., tables, chairs, monitors, etc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2014